If it's not what You are looking for type in the equation solver your own equation and let us solve it.
h^2-18h=-20
We move all terms to the left:
h^2-18h-(-20)=0
We add all the numbers together, and all the variables
h^2-18h+20=0
a = 1; b = -18; c = +20;
Δ = b2-4ac
Δ = -182-4·1·20
Δ = 244
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{244}=\sqrt{4*61}=\sqrt{4}*\sqrt{61}=2\sqrt{61}$$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-2\sqrt{61}}{2*1}=\frac{18-2\sqrt{61}}{2} $$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+2\sqrt{61}}{2*1}=\frac{18+2\sqrt{61}}{2} $
| 6^-3n=6^3n-1 | | -3.4x-0.3=1.4 | | .2x+4.1=6.3 | | m^2+15m-6=18 | | 2-a=20 | | 3^-3p=1 | | 8=2h+2 | | 1/2x+7=3x-18 | | b^2-27b=60 | | 180-x=1/2((2x+4)+28) | | 2+4x=8.5 | | -f+2+f=8-3f | | 3(3x-4)=+15+45 | | -5-6a=59 | | 3.5z+2.7z=-5 | | g^2-6g-16=0 | | 3t+50=7t+10 | | y^2-21+110=0 | | 20=3t+2 | | 7y+16-9y=7.5 | | 15k^2-53k+31=-13 | | 5+2x10= | | 74+2x=90 | | 18y^2-18y-5=51 | | x-16/3=5 | | 4(3x+4)-2x=8x-20 | | 8y^2-73y=90 | | -4*(8.333333333+2y)-7*y+3*(8.333333333+2*y-2*y+11)=27 | | 3u-34=u | | -5a-6a=-59 | | -4(8.333333333+2y)-7y+3(8.333333333+2y-2y+11)=27 | | 2x=3(5x-7)=47 |